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Abstract: This paper presents a compiler system for adaptive computing. Our approach Increases the flexibility and usability in a way that allows to port 
the system to different targets with a minimal effort. Built on an existing design flow, we try to reach a new level of functionality by analyzing and 
partitioning C programs at the highest possible description level. We show that the analysis on this level is more efficient than on lower ones due to the 
exploitability of more expressive programming constructs. The improved analysis results combined with a new SSA based algorithm for data path 
creation can lead to a higher solution quality of the final system configuration. 
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——————————      —————————— 
 

1.   INTRODUCTION 

raditionally, arithmetic performance of computing 
systems is increased by faster or more processors. 
Adaptive systems, on the other hand, accelerate 

programs by executing parts of the algorithm on adaptive 
hardware.  These elements can be dynamically 
reconfigured during the program run. Some existing 
research projects in adaptive systems have already 
demonstrated the advantages: Coupling a MIPS II 
processor with a special FPGA [BaGS94] in the project 
BRASS of the University of Berkeley [Wawr00] has resulted 
in speed-ups of 2 to 10 (simulated).  An example of a real 
system is the Nimble project at Synopsys [Harr98] which 
was performed in cooperation with the University of 
Berkeley and our department [Koch96]. 
 
 
2.    NIMBLE DESIGN FLOW 

One of the aims of Nimble is to generate executable 
software and hardware as quickly as pure software 
compilation, and not as slowly as the hardware synthesis 
common today. Such HW/SW programs should be 
compiled in a time frame of ten minutes instead of several 
hours. Figure 1 shows the design flow of Nimble. The core 
compiler, which is the focus of this paper, reads a program 
described in a high-level programming language. The 

compiler then analyses the program, partitions it into 
hardware and software, and generates data paths for the 
reconfigurable hardware (RL). In parallel, the software part 
is instrumented with functions for configuring and 
exchanging with the RL. This extended software part is 
finally output as C-code. 
 

 
 

Figure 1: HW/SW design procedure in Nimble 

The data paths are pre-placed by a dedicated tool 
developed specifically for this purpose.  Routing is 
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performed by the standard Xilinx M3 suite. Afterwards, the 
bit streams for the RL are compressed and converted into 
linkable object files. The final program is the result of 
linking the SW C-code and the HW object files. 

 
3.    COMPILER ARCHITECTURE 

The current compiler [BaGS94] partitions the application 
into software and hardware and produces Data Flow 
Graphs (DFG) for the latter. Although it works satisfactorily 
and obtains good results, it has potential for improvements. 
Particularly, the heuristics for the selection of program 
partitions for hardware, as well as the generation of data 
paths can profit from further work.  

 
Figure 2: The Compiler C_fas 

One weakness is that the characteristics of target RL were 
not considered in sufficient detail. As an example, the sizes 
of the hardware components were determined only by 
looking at SW operations, not the HW functions actually 
available. E.g., if the library for one type of RL contains a 
“left shift” cell which might be unavailable on another RL 
architecture then the compiler would not be able to handle 
this. Additionally, certain analysis phases rely on out dated 
methods. This paper discusses multiple routes of approach 
to expunge these misfeatures and improve the system as a 
whole. 
 
3.1   SUIF2 COMPILER SYSTEM 
 
For this work, we use the SUIF2 compiler system SUIF2 of 
the University of Stanford [LamM99]. The intermediate 
representation of program code used by SUIF2 is quite clear 
and easily expandable. Its modular concept allows quick 
modifications that are only local in scope. This 

differentiates it from other well-known compilers such as 
GCC [GCC00], whose intermediate representation was 
more optimized for performance than for clarity.   
 

We have also evaluated the SGI-Pro64-Compiler 
[SGI00] because it supports important structures for us 
(hyperblocks, SSA form of control flow graphs). But the 
appropriate methods are unfortunately supplied only on a 
very low-level intermediate representation that is very close 
to the executable program.  In contrast to [BaGS94], we 
want to perform optimizations and partitioning on a very 
high level of program representation. In this approach, we 
differ from the current Nimble. 
 
3.2   Work on High-Level Representations 
 
A high-level representation can express information, which 
becomes lost or distorted in lower forms. In these cases, it 
has to be tediously reconstructed by complicated analysis 
algorithms.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : Different Representations 

The example in Figure 3 demonstrates this: All three cases 
of the SWITCH statement can be speculatively executed in 
parallel since the cases are data independent and do not 
have to be processed sequentially (BREAK). In a lower-level 
machine-oriented representation (shown at the above of 
Figure 3), the same information becomes available only 
after additional analysis steps are executed. 
 
3.3   Optimization Steps 
 

Our first optimization steps rely on proven machine-
independent methods. We employ Scalarization [CaMT94], 
Software Pipelining [Much97], Code Movement and other 
techniques described in [BaGS94]. In this manner, we 
reduce memory accesses in loops and attempt to create 
inside loops having a high degree of instruction level 
parallelism. 
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3.4   Selection of Hardware Building Blocks 
 
Next, the compiler selects operations for a later hardware 
implementation on the high level representation. This is 
feasible since HW operations will not be affected by lower 
level transformations. For evaluating the HW-suitability of 
SW operations, we rely on estimation data available 
through the FLAME interface [Koch00]. This flexible 
interface allows access to hardware-specific libraries, and 
offers hardware-relevant data such as area and time 
requirements of operations, availability of synthesizable 
components as well as chip resources. Partitioning relies 
mainly on the data collected in this step. 

 
After annotating the operations with this HW 

information, the program representation is now extended 
to a control flow graph (CFG). A disadvantage of a CFG on 
such a high level is that we must consider more types of 
operations as nodes of the CFG. Thus, additional control 
structures exist beyond simple branches (e.g., SWITCH, 
FOR, WHILE statements). However, the advantages 
described in section 3.2 outweigh this. Furthermore, the 
CFG needs to be generated only once and adapts to later 
modifications automatically. The generation of such a CFG 
is supported by available modules in SUIF2. 
 
3.5   Profiling 
 

A static profiling pass follows the annotation of the 
operations. Here, paths of the CFG are marked with their 
execution frequency. Note that we consciously decided 
against a dynamic profiling approach. 
 

 
Figure 4: Hyper block with tail duplication 

 
The papers [BaLa93] and [WuLa94] show that static 

profiling is sufficient for the determination of the most 
frequented program regions: in the average, 80% of the 20% 
most-used blocks were determined, in programs from the 
SPEC benchmarks and various UNIX commands. We can 

improve this already satisfying result in our hyperblock 
selection by the fact that we incrementally optimize the 
appropriate threshold value (both defined later). 
 
3.6   Hyperblocks 
 
Now that all necessary information for a further processing 
is available, we proceed as described in [BaGS94]. We pick 
regions from the CFG which are especially suited for HW 
execution. In our case, we concentrate on loops. Before we 
execute further transformations, these regions are 
duplicated. If they later turn out to be unsuited for 
execution in hardware, we can go back to the original 
untransformed version. 

 
Furthermore, we can use the software version of a 

loop if we must interrupt the hardware execution, e.g., 
when the execution hits a HW-infeasible statement in a HW 
loop. In this case, the SW version performs the 
corresponding iterations. Specific reasons for exits from a 
HW-loop include the call of functions which are not or only 
very inefficiently realizable in hardware. This generally also 
applies to floating point operations, for which the processor 
usually possesses a dedicated FPU, or I/O instructions 
which manipulate HW inaccessible to the RL.  

 
In order to select paths in the loops as regions for 

hardware execution, they must be evaluated in terms of 
their “quality”. This quality value is proportional to the 
execution frequency of a path and anti-proportional to the 
HW-area required. All paths with a quality value above a 
threshold are combined into a HW block. 
 

If such a block has multiple entry points, we must 
switch several times between hardware and software 
execution. These switches require time for data exchange 
between processor and RL. To avoid this, we rely on the 
theory of hyperblocks [Mahl96]. These are blocks of the 
CFG with only one entry point but several exits. 

 
In Figure 4 one recognizes that Block5 was copied to 

Block5’ outside of the hyperblock HB. Without this so-
called tail duplication, the hyperblock HB would possess 
several inputs (Block1 -> Block2, Block4 -> Block5). 
 

If there are several nested loops, which could be 
selected as hyperblocks exist, this represents a special 
challenge for our algorithm.  In that case, the loops are 
duplicated in order from outer to inner loops. Contrary to 
[BaGS94], we do not consider a contained loop as an 
independent block. Instead, it is considered as normal 
control flow and evaluated as described before with the 
hyperblock selection algorithm. Thus, we can select from a 
larger quantity of potential HW-data paths. 
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3.7   Static Single Assignment Form 
 
After the selection of hyper blocks for HW execution, these 
program parts are transformed in a way that leads to easily 
implementable blocks for the target RL. The representation 
as a DFG is particularly suitable for our algorithm. An 
important prerequisite is the detailed analysis of the data 
dependencies of the different variables in the selected 
blocks. We use a relatively new development from the 
research in compiler construction in contrast to [BaGS94]. 
Instead of definition-use-chains of variables used 
previously, we convert the CFG for the selected blocks into 
the static single assignment form (SSA) [Much97]. When a 
CFG is represented by the SSA form, there is only one 
definition and one use for each variable.  Thus, we can 
considerably simplify different optimizations on this part of 
the CFG. Sample optimizations using the SSA form are 
described in [Appe98]. Additionally, dependencies between 
arguments are resolved. Consider the following program 
fragment 
 

for(i=1; i<100; i++) a[i] = 0; 
for(i=1; i<100; i++) b[i] = 0; 

 
There is no reason to actually use the same index variable in 
both loops. In the SSA form, this dependency does not exist 
and both loops may be executed in parallel. In particular, 
we use the array SSA form from [KnSa98], which also 
handles dependencies between different array items. The 
resulting hardware data paths do not access memory more 
frequently than absolutely necessary. 
 

From the CFG in SSA form, the DFGs can be easily 
produced. This is a further advantage especially for our 
application: Each definition of a variable represents a node 
of the DFG. An edge of this graph goes from the definition 
of a variable to its use. DFGs without multiplexers are built 
from CFGs without branches. We have to insert 
multiplexers in the DFG and also into the resulting HW 
data path if joining branches exist in the CFG. These 
locations of multiplexers are indicated by the location of φ - 
functions in the nodes of the SSA form. The decision 
conditions of these multiplexers are easily derivable from 
the dominance structure of the CFG [Much97]. 

 
3.8   Data Path Scheduling 
 
When we have computed all data paths, we can now decide 
whether each data path actually fits on the target hardware. 
Otherwise, we must repeat the generation of hyperblocks 
with a smaller threshold value (section 3.4).  Finally, if all 
data paths fit individually on the target hardware, we can 
decide further whether it is worth to pack several data 
paths on the RL at the same time. Helpful for this task is a 
data path load graph (Figure 5) which indicates the use of 
data paths as a function of the control flow. The figure 
shows a possible partitioning of the data path load graph. 

In the example shown, the entire loop from data_path4 to 
data_path6 fits at one time on the RL. Thus, unnecessary 
reconfiguration times are avoided.  
 

 
Figure 5: Data path load graph 

The algorithm for partitioning the data path load 
graph must also consider whether it is really worthwhile to 
implement all possible data paths in hardware. E.g., if the 
loop specified above would not fit perfectly on the RL and 
additionally had a high execution frequency, then it could 
be advantageous to implement only two of the data paths 
in hardware and one purely in software. Thus, one would 
avoid “thrashing” between the two RL configurations. 
Previous work shows that numerous improvements are 
possible particularly in this area. This will be emphasized in 
our of further research. 
 
4.    CONCLUSION 

We described an improved approach for a compiler which 
partitions a high-level language program automatically for 
partial HW execution on adaptive systems and generates 
suitable hardware data paths from CFGs. On the basis of 
existing solutions, we introduced new techniques for a 
more balanced partitioning and improving data path 
quality. Further research will actually quantify the 
advantages in relation to the current system. 
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