
International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 904
ISSN 2229-5518

IJSER © 2014
http://www.ijser.orgs

Technology in Construction of Compiler
for Adaptive Computers

Chandra Srinivas Potluri, Sathish Kumar Konga, Sreedevi Kadiyala

Abstract: This paper presents a compiler system for adaptive computing. Our approach Increases the flexibility and usability in a way that allows to port
the system to different targets with a minimal effort. Built on an existing design flow, we try to reach a new level of functionality by analyzing and
partitioning C programs at the highest possible description level. We show that the analysis on this level is more efficient than on lower ones due to the
exploitability of more expressive programming constructs. The improved analysis results combined with a new SSA based algorithm for data path
creation can lead to a higher solution quality of the final system configuration.

Keywords: Adaptive Systems, Compiler Systems, Control Flow Graph, Data Flow Graphs, Hardware/Software Partitioning, Reconfiguration Scheduling,
Static Single Assignment.

—————————— ——————————

1. INTRODUCTION

raditionally, arithmetic performance of computing
systems is increased by faster or more processors.
Adaptive systems, on the other hand, accelerate

programs by executing parts of the algorithm on adaptive
hardware. These elements can be dynamically
reconfigured during the program run. Some existing
research projects in adaptive systems have already
demonstrated the advantages: Coupling a MIPS II
processor with a special FPGA [BaGS94] in the project
BRASS of the University of Berkeley [Wawr00] has resulted
in speed-ups of 2 to 10 (simulated). An example of a real
system is the Nimble project at Synopsys [Harr98] which
was performed in cooperation with the University of
Berkeley and our department [Koch96].

2. NIMBLE DESIGN FLOW

One of the aims of Nimble is to generate executable
software and hardware as quickly as pure software
compilation, and not as slowly as the hardware synthesis
common today. Such HW/SW programs should be
compiled in a time frame of ten minutes instead of several
hours. Figure 1 shows the design flow of Nimble. The core
compiler, which is the focus of this paper, reads a program
described in a high-level programming language. The

compiler then analyses the program, partitions it into
hardware and software, and generates data paths for the
reconfigurable hardware (RL). In parallel, the software part
is instrumented with functions for configuring and
exchanging with the RL. This extended software part is
finally output as C-code.

Figure 1: HW/SW design procedure in Nimble

The data paths are pre-placed by a dedicated tool
developed specifically for this purpose. Routing is

T

————————————————
• Chandra Srinivas Potluri is currently pursuing Ph.D in Computer Science,

from University of Allahabad, India. Working as an Asst. Professor in
Debre Berhan University, Ethiopia. E-mail: pcsvas@gmail.com

• Sathish Kumar Konga is currently working as an Asst. Prof in Sri Gayatri
Degree & PG College, Mulug Road, Hanamkonda, Warangal, Telangana,
India. E-mail: konga.knga@gmail.com

• Sreedevi Kadiyala Ph.D in Computer Science in University of Allahabad,
India. Working as an Associate Professor in Wolkite University, Ethiopia.
E-mail: sreedevikadiyala@gmail.com

IJSER

http://www.ijser.org/
mailto:pcsvas@gmail.com
mailto:konga.knga@gmail.com
mailto:sreedevikadiyala@gmail.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 905
ISSN 2229-5518

IJSER © 2014
http://www.ijser.orgs

performed by the standard Xilinx M3 suite. Afterwards, the
bit streams for the RL are compressed and converted into
linkable object files. The final program is the result of
linking the SW C-code and the HW object files.

3. COMPILER ARCHITECTURE

The current compiler [BaGS94] partitions the application
into software and hardware and produces Data Flow
Graphs (DFG) for the latter. Although it works satisfactorily
and obtains good results, it has potential for improvements.
Particularly, the heuristics for the selection of program
partitions for hardware, as well as the generation of data
paths can profit from further work.

Figure 2: The Compiler C_fas

One weakness is that the characteristics of target RL were
not considered in sufficient detail. As an example, the sizes
of the hardware components were determined only by
looking at SW operations, not the HW functions actually
available. E.g., if the library for one type of RL contains a
“left shift” cell which might be unavailable on another RL
architecture then the compiler would not be able to handle
this. Additionally, certain analysis phases rely on out dated
methods. This paper discusses multiple routes of approach
to expunge these misfeatures and improve the system as a
whole.

3.1 SUIF2 COMPILER SYSTEM

For this work, we use the SUIF2 compiler system SUIF2 of
the University of Stanford [LamM99]. The intermediate
representation of program code used by SUIF2 is quite clear
and easily expandable. Its modular concept allows quick
modifications that are only local in scope. This

differentiates it from other well-known compilers such as
GCC [GCC00], whose intermediate representation was
more optimized for performance than for clarity.

We have also evaluated the SGI-Pro64-Compiler
[SGI00] because it supports important structures for us
(hyperblocks, SSA form of control flow graphs). But the
appropriate methods are unfortunately supplied only on a
very low-level intermediate representation that is very close
to the executable program. In contrast to [BaGS94], we
want to perform optimizations and partitioning on a very
high level of program representation. In this approach, we
differ from the current Nimble.

3.2 Work on High-Level Representations

A high-level representation can express information, which
becomes lost or distorted in lower forms. In these cases, it
has to be tediously reconstructed by complicated analysis
algorithms.

Figure 3 : Different Representations

The example in Figure 3 demonstrates this: All three cases
of the SWITCH statement can be speculatively executed in
parallel since the cases are data independent and do not
have to be processed sequentially (BREAK). In a lower-level
machine-oriented representation (shown at the above of
Figure 3), the same information becomes available only
after additional analysis steps are executed.

3.3 Optimization Steps

Our first optimization steps rely on proven machine-
independent methods. We employ Scalarization [CaMT94],
Software Pipelining [Much97], Code Movement and other
techniques described in [BaGS94]. In this manner, we
reduce memory accesses in loops and attempt to create
inside loops having a high degree of instruction level
parallelism.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 906
ISSN 2229-5518

IJSER © 2014
http://www.ijser.orgs

3.4 Selection of Hardware Building Blocks

Next, the compiler selects operations for a later hardware
implementation on the high level representation. This is
feasible since HW operations will not be affected by lower
level transformations. For evaluating the HW-suitability of
SW operations, we rely on estimation data available
through the FLAME interface [Koch00]. This flexible
interface allows access to hardware-specific libraries, and
offers hardware-relevant data such as area and time
requirements of operations, availability of synthesizable
components as well as chip resources. Partitioning relies
mainly on the data collected in this step.

After annotating the operations with this HW

information, the program representation is now extended
to a control flow graph (CFG). A disadvantage of a CFG on
such a high level is that we must consider more types of
operations as nodes of the CFG. Thus, additional control
structures exist beyond simple branches (e.g., SWITCH,
FOR, WHILE statements). However, the advantages
described in section 3.2 outweigh this. Furthermore, the
CFG needs to be generated only once and adapts to later
modifications automatically. The generation of such a CFG
is supported by available modules in SUIF2.

3.5 Profiling

A static profiling pass follows the annotation of the
operations. Here, paths of the CFG are marked with their
execution frequency. Note that we consciously decided
against a dynamic profiling approach.

Figure 4: Hyper block with tail duplication

The papers [BaLa93] and [WuLa94] show that static

profiling is sufficient for the determination of the most
frequented program regions: in the average, 80% of the 20%
most-used blocks were determined, in programs from the
SPEC benchmarks and various UNIX commands. We can

improve this already satisfying result in our hyperblock
selection by the fact that we incrementally optimize the
appropriate threshold value (both defined later).

3.6 Hyperblocks

Now that all necessary information for a further processing
is available, we proceed as described in [BaGS94]. We pick
regions from the CFG which are especially suited for HW
execution. In our case, we concentrate on loops. Before we
execute further transformations, these regions are
duplicated. If they later turn out to be unsuited for
execution in hardware, we can go back to the original
untransformed version.

Furthermore, we can use the software version of a

loop if we must interrupt the hardware execution, e.g.,
when the execution hits a HW-infeasible statement in a HW
loop. In this case, the SW version performs the
corresponding iterations. Specific reasons for exits from a
HW-loop include the call of functions which are not or only
very inefficiently realizable in hardware. This generally also
applies to floating point operations, for which the processor
usually possesses a dedicated FPU, or I/O instructions
which manipulate HW inaccessible to the RL.

In order to select paths in the loops as regions for

hardware execution, they must be evaluated in terms of
their “quality”. This quality value is proportional to the
execution frequency of a path and anti-proportional to the
HW-area required. All paths with a quality value above a
threshold are combined into a HW block.

If such a block has multiple entry points, we must
switch several times between hardware and software
execution. These switches require time for data exchange
between processor and RL. To avoid this, we rely on the
theory of hyperblocks [Mahl96]. These are blocks of the
CFG with only one entry point but several exits.

In Figure 4 one recognizes that Block5 was copied to

Block5’ outside of the hyperblock HB. Without this so-
called tail duplication, the hyperblock HB would possess
several inputs (Block1 -> Block2, Block4 -> Block5).

If there are several nested loops, which could be
selected as hyperblocks exist, this represents a special
challenge for our algorithm. In that case, the loops are
duplicated in order from outer to inner loops. Contrary to
[BaGS94], we do not consider a contained loop as an
independent block. Instead, it is considered as normal
control flow and evaluated as described before with the
hyperblock selection algorithm. Thus, we can select from a
larger quantity of potential HW-data paths.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 907
ISSN 2229-5518

IJSER © 2014
http://www.ijser.orgs

3.7 Static Single Assignment Form

After the selection of hyper blocks for HW execution, these
program parts are transformed in a way that leads to easily
implementable blocks for the target RL. The representation
as a DFG is particularly suitable for our algorithm. An
important prerequisite is the detailed analysis of the data
dependencies of the different variables in the selected
blocks. We use a relatively new development from the
research in compiler construction in contrast to [BaGS94].
Instead of definition-use-chains of variables used
previously, we convert the CFG for the selected blocks into
the static single assignment form (SSA) [Much97]. When a
CFG is represented by the SSA form, there is only one
definition and one use for each variable. Thus, we can
considerably simplify different optimizations on this part of
the CFG. Sample optimizations using the SSA form are
described in [Appe98]. Additionally, dependencies between
arguments are resolved. Consider the following program
fragment

for(i=1; i<100; i++) a[i] = 0;
for(i=1; i<100; i++) b[i] = 0;

There is no reason to actually use the same index variable in
both loops. In the SSA form, this dependency does not exist
and both loops may be executed in parallel. In particular,
we use the array SSA form from [KnSa98], which also
handles dependencies between different array items. The
resulting hardware data paths do not access memory more
frequently than absolutely necessary.

From the CFG in SSA form, the DFGs can be easily
produced. This is a further advantage especially for our
application: Each definition of a variable represents a node
of the DFG. An edge of this graph goes from the definition
of a variable to its use. DFGs without multiplexers are built
from CFGs without branches. We have to insert
multiplexers in the DFG and also into the resulting HW
data path if joining branches exist in the CFG. These
locations of multiplexers are indicated by the location of φ -
functions in the nodes of the SSA form. The decision
conditions of these multiplexers are easily derivable from
the dominance structure of the CFG [Much97].

3.8 Data Path Scheduling

When we have computed all data paths, we can now decide
whether each data path actually fits on the target hardware.
Otherwise, we must repeat the generation of hyperblocks
with a smaller threshold value (section 3.4). Finally, if all
data paths fit individually on the target hardware, we can
decide further whether it is worth to pack several data
paths on the RL at the same time. Helpful for this task is a
data path load graph (Figure 5) which indicates the use of
data paths as a function of the control flow. The figure
shows a possible partitioning of the data path load graph.

In the example shown, the entire loop from data_path4 to
data_path6 fits at one time on the RL. Thus, unnecessary
reconfiguration times are avoided.

Figure 5: Data path load graph

The algorithm for partitioning the data path load
graph must also consider whether it is really worthwhile to
implement all possible data paths in hardware. E.g., if the
loop specified above would not fit perfectly on the RL and
additionally had a high execution frequency, then it could
be advantageous to implement only two of the data paths
in hardware and one purely in software. Thus, one would
avoid “thrashing” between the two RL configurations.
Previous work shows that numerous improvements are
possible particularly in this area. This will be emphasized in
our of further research.

4. CONCLUSION

We described an improved approach for a compiler which
partitions a high-level language program automatically for
partial HW execution on adaptive systems and generates
suitable hardware data paths from CFGs. On the basis of
existing solutions, we introduced new techniques for a
more balanced partitioning and improving data path
quality. Further research will actually quantify the
advantages in relation to the current system.

5. REFERENCES

[Appe98] Appel, A., Modern Compiler Implementation in
C, Cambridge University Press, 1998

[BaGS94] Bacon, D. F., Graham, S. L., Sharp O. J., Compiler
Transformations for High-Performance Computing, ACM
Computing Surveys 26(4), 1994

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 908
ISSN 2229-5518

IJSER © 2014
http://www.ijser.orgs

[BaLa93] Ball, T., Larus, J., Branch Prediction for free, Proc.
of the Conf. on Prog. Language Design and
Implementation, 1993

[CaHW00] Callahan, T., Hauser, R., Wawrzynek, J., The
GARP Architecture and CCompiler, IEEE Computer 33(4),
62-69, April 2000

[CaMT94] Carr, S., McKinley, K. S., Tseng, C., Compiler
Optimizations for Improving Data Locality, In Proceedings
of the Sixth International Conference on Architectural
Support for Programming Languages and Operating
Systems, San Jose, CA, October 1994

[GCC00] GCC Homepage, http://www.gnu.org/software/
gcc/gcc.html

[Harr98] Harr, R., The Nimble Compiler Environment for
Agile Hardware“, Proc. ACS PI Meeting,
http://www.dyncorp-is.com/darpa/meeting/
acs98apr/Synopsys\%20for\%20WWW.ppt, Napa Valley
(CA) 1998

[HaWa97] Hauser, J. R. and Wawrzynek, J., GARP A MIPS
processor with a reconfigurable coprocessor, Proceedings of
IEEE Workshop on FPGAs for Custom Computing
Machines (FCCM), Napa, CA, April 1997

[KnSa98] Knobe, K., Sarkar, V., Array SSA Form and its use
in Parallelization, POPL, San Diego 1998

[Koch96] Structured Design Implementation – A Strategy
for Implementing Regular Datapaths on FPGAs. In
International Symposium on Field Programmable Gate
Arrays, Monterey, CA., Feb. 1996

[Koch00] Koch, A., FLAME: A flexible API for Module-
based Environments - Users Guide and Manual,
http://www.icsi.berkeley.edu/~akoch/
research.html#FLAME, Berkeley (CA), 2000

[LamM99] Monika Lam, An Overview of the SUIF2 System,
ACM SIGPLAN ’99 Conference on Programming Language
Design and Implementation,
http://suif.stanford.edu/suif/suif2/doc-2.2.0-4/
tutorial99.ps

[Mahl96] Mahlke, S., Exploiting instruction level
parallelism in the presence of conditional branches, PhD
Thesis, University of Illinois at Urbana-Champaign, 1996

[Much97] Muchnik, S. S., Advanced Compiler design
implementation, Morgan Kaufmann Publishers, Inc., San
Francisco, CA, 1997

[SGI00] SGI Pro64, http://oss.sgi.com/projects/Pro64/

[Wawr00] J. Wawrzynek, The BRASS Research Project,
http://brass.cs.berkeley.edu/

[WuLa94] Wu, Y., Larus, J. R., Static Branch Frequency and
Program Profile Analysis, In 27th IEEE/ACM Symposium
on Microarchitecture (MICRO-27), 1994

IJSER

http://www.ijser.org/
http://www.gnu.org/software/
http://www.dyncorp-is.com/darpa/meeting/
http://suif.stanford.edu/suif/suif2/doc-2.2.0-4/
http://oss.sgi.com/projects/Pro64/
http://brass.cs.berkeley.edu/

	3.1 SUIF2 COMPILER SYSTEM
	3.2 Work on High-Level Representations
	3.3 Optimization Steps
	3.4 Selection of Hardware Building Blocks
	3.5 Profiling
	3.6 Hyperblocks
	3.7 Static Single Assignment Form
	3.8 Data Path Scheduling

